“特别能聊”的人工智能会聊出些什么?******
聊天机器人ChatGPT优异表现引发市场关注,人工智能生成内容概念走上风口
“特别能聊”的人工智能会聊出些什么?
本报记者 时斓娜
阅读提示
全新人工智能聊天机器人模型ChatGPT不仅能够通过学习人类的语言来进行对话,还能根据聊天的上下文进行互动,让人们更直观地感受到了人工智能的魅力。包括内容生成、搜索引擎增强等在内的领域,将是其潜在的产业化方向。ChatGPT的商业化落地,还需要克服技术和科技伦理等方面的问题。
家里要养一只猫,该如何给猫取名字?怎样写出一个纸牌游戏的代码?在不同语境中,词语“意思”到底有几个意思?这些五花八门、时常令人绞尽脑汁都难以得出答案的问题,在人工智能聊天机器人ChatGPT的面前,不过是瞬间便可迎刃而解的“一碟小菜”。
产品发布短短两个月,ChatGPT的日活量已突破千万,不少人“聊过”之后惊呼“这太像真正的人类了”。其超预期的表现引发越来越多的市场关注,人工智能生成内容(AIGC)概念由此走上风口。
人工智能聊天究竟能聊些啥?ChatGPT所代表的AIGC应用将带来哪些影响和变化?记者对此进行了调查采访。
“真正像人类一样聊天交流”
“我所热爱的是我真实的生活,因为它包含了我所有的经历和感受,是我每一天都在体验和思考的。”这句乍看上去充满了人类体悟和情感的话,实则出自人工智能聊天机器人ChatGPT。
随着ChatGPT大火,不少网友将它与自己的聊天记录分享到社交平台上,ChatGPT时而诙谐有趣,时而又显得思想深邃。除了各种聊天互动外,还有不少网友们将ChatGPT视为一种工具,让其写作文、翻译文章,甚至写代码。迅速的响应能力和较为靠谱的回答让大家直呼其“真正像人类一样聊天交流”“特别能聊”。
中国信息通信研究院联合中国人工智能产业发展联盟对ChatGPT进行的测试显示,ChatGPT在百科检索、数学问答、文学交流、常识问答、知识推理等对话任务上的意图识别率均达到98%左右,在生活闲聊上的意图识别率约为95%,已具备较好的语义理解能力。
实际上,ChatGPT属于生成式人工智能的一个典型应用。人工智能是怎样“进化”得如此智能的?“这是因为ChatGPT建立在大型语言模型上,会通过连接大量的语料库来训练模型。这些语料库包含了真实世界中的对话和各种网络公开信息,使ChatGPT知识丰富,还能根据上下文进行互动。”深度科技研究院院长张孝荣表示。
创新交互为AIGC带来新启发
随着人工智能技术的发展,近年来AIGC类型不断丰富、质量不断提升、技术的工程化水平越来越高,国内外科技公司纷纷发力布局AIGC领域。
以百度文心大模型为例,输入一个题目,它可以瞬间写出上百篇作文;根据一句话或者一段描述文本,可以生成一幅精美的画作;根据一幅图像,可以自动生成高清、流畅的视频。
在百度技术委员会主席吴华看来,ChatGPT在用户界面和交互上是一种比较创新的模式,用户更容易以自然语言的方式进行交互,这会给大家带来革新性的认识,也会给AIGC带来新的启发。
目前,国外一些公司在积极探索并落地ChatGPT的诸多应用场景,通过将ChatGPT整合进搜索引擎等方式提高服务智能化水平。有观点认为,ChatGPT将颠覆搜索行业,在智能客服、游戏、虚拟人等领域也将得到广泛应用。硅谷投资机构红杉预测,未来AIGC有潜力产生数万亿美元的经济价值。
根据中国信息通信研究院发布的《人工智能白皮书(2022年)》,“生成式人工智能”技术将广泛应用于智能写作、代码生成、有声阅读、新闻播报、语音导航、影像修复等领域,听说读写等能力的有机结合成为未来发展趋势。
“人工智能生成在诗歌、作曲、绘画等艺术创作方面大放异彩,在分子结构、软件代码等科研生产领域的应用不断拓展,还帮助降低临床试验的科研成本和缩短研发周期。”云计算与大数据研究所内容科技部副主任石霖表示,当前,人工智能生成内容的辐射范围还在扩大,未来有望重塑各行业领域的研发面貌。
商业化落地需克服技术和伦理问题
尽管各界对AIGC发展前景保持乐观,但从现状来看,ChatGPT等产品想要真正落地,还需要克服技术和科技伦理等方面的问题。
在对ChatGPT进行的种种评测中,ChatGPT会犯一些常识性错误,反映出其在可控性、准确率方面仍存不足。有人形容,ChatGPT像极了一个很能聊但有时候喜欢信口开河的人类朋友。
中国信息通信研究院评测结果同样显示,ChatGPT在非闲聊型对话的任务完成率上表现一般,难以摆脱传统深度学习模型普遍存在的知识整合和逻辑推理的问题。
“ChatGPT虽然能够较好地回答不少问题,但在一些略有深度的、专业性较强的领域,其答案往往‘捉襟见肘’。这说明ChatGPT语料库规模和计算能力的天然不足,也说明了算法依然需要完善。”张孝荣说。
在技术层面以外,人工智能还面临着悬而未决的科技伦理问题。张孝荣表示,ChatGPT在科技伦理方面至少面临三大挑战:“一是版权问题,ChatGPT生成的内容更多来自搬运,容易引发侵权;二是信息安全问题;三是社会缺乏接纳这一新生事物的准备机制,这对监管挑战很大。”
在国内,AIGC产业化路径同样有待探索。石霖介绍说,国内AIGC产业基础薄弱,相关初创公司数量明显少于国外。同时,国内企业目前仍处于打磨产品阶段,还未出现较为好用的内容生成服务。
“乙类乙管”后是否会有第二轮感染?疫情信息如何统计?总台独家专访吴尊友******
1月8日起新冠病毒感染实施“乙类乙管”,对于疫情监测数据通报、病毒变异是否会引发新一轮感染,我国又将采取怎样的措施继续实施监控,总台央视记者独家专访中国疾控中心流行病学首席专家吴尊友,他就公众关心的问题进行了解答。
总台央视记者 史迎春:大家都在担心在国际上的奥密克戎BQ系列,然后包括XBB系列的变异株,它们在我们实行“乙类乙管”,出入境打开以后,进入国内会掀起第二轮的感染,这是大家普遍担心的一个问题,您认为这个问题应该怎么看。
中国疾控中心流行病学首席专家 吴尊友:我们也对国际社会的各个国家流行的新毒株的情况进行了解追踪,那么同时对国内发生的疫情也进行了毒株变异的监测,特别是从境外回国人员当中也检测到这些毒株。会不会造成新一轮的疫情,取决于变异的毒株和我们刚刚流行的这些毒株之间,在结构上面有多大的相似性,或者说它的变异差异有多大。从目前来看,因为它的变异也是奥密克戎亚型里面的分支的变异,马上造成新一轮传播的这种风险的话,应该说不会太大。
总台央视记者 史迎春:还有一种担心是认为中国人口基数比较大,感染的人口基数也大,会不会产生新的变种,从而影响整个世界的病毒序列,或者说整个世界的病毒的进程。
中国疾控中心流行病学首席专家 吴尊友:优化防控策略以后,本地传播的疫情病例数在有一定的水平和规模的情况下,确实存在着新的变异毒株的可能性,我们也密切关注。所以在“乙类甲管”调整为“乙类乙管”的疫情监测方案当中,就专门提到了新冠病毒变异毒株的监测,在现阶段,每天都在进行新的毒株的样本收集和测序,来对它的变化进行监测。从目前的结果来看,我们现在发现的所有的毒株,都是已经在国际共享平台上分享的毒株,也就是说在国外已经报告了,或者说主要是从境外流行以后传入中国,到目前为止还没有发现国内新出现的变异毒株。
为指导全国各地做好当前新型冠状病毒感染疫情监测工作,国务院联防联控机制印发了《新型冠状病毒感染“乙类乙管”疫情监测方案》,及时动态掌握人群感染发病水平和变化趋势,科学研判和预测疫情规模、强度和流行时间,动态分析病毒株变异情况,以及对传播力、致病力、免疫逃逸能力及检测试剂敏感性的影响,为疫情防控提供技术支撑。
总台央视记者 史迎春:对于之前疫情通报的数字和自己本身的感受,很多公众觉得差距比较大。我们国家一直的疫情统计和发布的疫情信息,是如何去监测和统计报告的?现在有没有相应的调整?
中国疾控中心流行病学首席专家 吴尊友:在武汉疫情控制以后,到我们优化防控方案这期间,是叫严格管控时期。每一起疫情的源头、造成感染的毒株,几乎每一个感染者都能够被诊断管理,所以我们采取的是一个计数统计。现阶段由于防控方案的调整,报告病例数和公众感觉的数字,存在着一定的差距。造成这种差距有两个方面的原因,一个是不再实行行政区的大规模核酸检测了,除了重点机构重点人群以外,采取的方法是愿检尽检的方法,这样的话检测的人数、报告的人数就有明显的下降。第二个方面,疫情的感染者主要以轻症为主,多数人还在家庭自我休息调整、进行抗原检测,这一部分也没有纳入到传染病报告,这就造成了这样的差距。为了更好地做好统计工作,联防联控机制制定下发了新冠病毒感染“乙类乙管”疫情监测方案,采取的是多种渠道的监测,包括住院病例的报告监测、核酸抗原检测的数字统计,还有重点机构像养老福利机构的监测,再有像学校学生的呼吸道症状的监测,以及对部分病人的检测。还有我们在全国设立500多个流感哨点监测。我们采用了多种统计方法综合运用,也能够相对准确评估疫情的发生发展趋势,能够对于疫情的发病,流行的强度,流行的趋势,流行的时间做出研判,对防控效果作出评价。在过去几年,欧美国家和全球其他的国家实际上也是采取这样一个统计方法,它主要就是通过抽样的方法来反映总体情况。(央视新闻客户端)